Перевод: со всех языков на русский

с русского на все языки

трубки системы охлаждения

  • 1 water-circulating pipes

    English-russian automobile dictionary > water-circulating pipes

  • 2 water-circulating pipes

    Англо-русский словарь по машиностроению > water-circulating pipes

  • 3 water-circulating pipes

    Автомобильный термин: трубки системы охлаждения

    Универсальный англо-русский словарь > water-circulating pipes

  • 4 water inlet gasket

    Универсальный англо-русский словарь > water inlet gasket

  • 5 water inlet hose

    Универсальный англо-русский словарь > water inlet hose

  • 6 water inlet gasket

    English-russian automobile dictionary > water inlet gasket

  • 7 water inlet hose

    English-russian automobile dictionary > water inlet hose

  • 8 water inlet gasket

    прокладка впускного патрубка (системы охлаждения) двигателя, прокладка подводящей трубки радиатора

    Англо-русский словарь по машиностроению > water inlet gasket

  • 9 water inlet hose

    шланг подводящего патрубка (системы охлаждения) двигателя, шланг подводящей трубки радиатора

    Англо-русский словарь по машиностроению > water inlet hose

  • 10 self contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self contained cable

  • 11 self-contained cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained cable

  • 12 self-contained pressure cable

    1. кабель с каналом в токоведущей жиле

     

    кабель с каналом в токоведущей жиле

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    кабель с центральным маслопроводящим каналом
    кабель в собственной оболочке

    Кабель, в котором создающая давление жидкость находится в пределах металлической оболочки, наложенной в процессе изготовления
    [СТ МЭК 50(461)-84]
    [ Источник]


    Искусственное охлаждение маслонаполненных кабелей с центральным маслопроводящим каналом

    Для преодоления жестких ограничений по токовой нагрузочной способности кабелей, проложенных в земле, может применяться искусственное охлаждение кабелей.
    Возможны следующие варианты искусственного охлаждения:

    • внешнее охлаждение с помощью труб. При этом обеспечивается протекание воды по пластмассовым трубам, проложенным вблизи от кабеля. Общее термическое сопротивление кабеля в схеме замещения шунтируется термическим сопротивлением между кабелем и охлаждающей водой. Температура воды увеличивается при движении по трубам, и, таким образом, имеется ограничение по длине кабеля, который может быть охлажден таким способом. Эффективное термическое  coпpотивление содержит составляющие: сопротивление грунта между кабелем и трубами, сопротивление стенки трубы, термическое сопротивление между кабелем и охлаждающей водой и термическое сопротивление самого кабеля. Такая система искусственного охлаждения относительно проста и имеет ряд преимуществ по механическим характеристикам для кабелей, проложенных непосредственно в земле. Охлаждение длинных КЛ производится путем применения труб охлаждения большого диаметра, например диаметром 150 мм. Такие трубы должны быть гибкими и должны иметь армированные стенки с тем, чтобы выдерживать давление почвы в том случае, когда они не заполнены водой под давлением;

     5131

    Внешнее охлаждение кабелей с помощью трубс водой (обозначены прямой и обратный потоки воды)

    Т - трубы с водой;
    К - кабель;
    1 - обратный трубопровод;
    2 - прямой трубопровод

    • поверхностное охлаждение.
      Система более интенсивного водяного охлаждения, чем при использовании труб внешнего охлаждения, выполнена следующим образом. Кабель размещается в жесткой пластмассовой трубе диаметром около 250 мм, применяется принудительная циркуляция воды через трубу. Такой способ искусственного охлаждения дороже, чем предыдущий, но при этом для кабеля с жилой 2000 мм2 можно достичь токовой нагрузки свыше 3200 А.

    Способ поверхностного искусственного охлаждения также известен как способ непосредственного охлаждения оболочки (в отличие от внешнего охлаждения с помощью труб). При непосредственном охлаждении кабелей возникают проблемы, связанные с возможным перемещением кабелей в трубопроводе из-за электромеханических усилий. Из-за значительной стоимости схем поверхностного охлаждения схема внешнего охлаждения является более предпочтительной, и установки поверхностного непосредственного охлаждения пpименяются лишь в тех случаях, когда требуемая нагрузочная способность кабелей не может быть достигнута другим способом. Дополнительные проблемы в схемах поверхностного искусственного охлаждения связаны с высокой температурой в среднем сечении соединительных муфт, которые имеют повышенные термические сопротивления изоляции. Для схем естественного охлаждения кабелей обычно такой проблемы не возникает, так как имеется возможность увеличить расстояние между опорами муфт. При температуре жилы кабеля 85° С, несмотря на принятые меры, температура в соединительных муфтах может быть значительно выше;

    5132 

     Поверхностное или непосредственное искусственное охлаждение кабелей, проложенных в трубах

    • внутреннее охлаждение.
      При этом циркуляция охлаждающей жидкости обеспечивается в каждой жиле кабеля. Охлаждающей жидкостью может быть: изоляционное масло, которое является частью масла в бумажно-масляной изоляции кабеля, вода, которая имеет большую способность поглощать теплоту, чем масло. Однако вода должна быть включена в водонепроницаемые трубки внутри канала в жиле кабеля, как показано на рисунке

     5133

    Поперечное сечение кабеля на напряжение 110 кВ с внутренним водяным охла ждением:

    1 - канал для воды диаметром d;
    2 - водонепроницаемая трубка;
    3 - токопроводящая жила диаметром dж, скрученная из отдельных проволок;
    4 - полупроводящая бумага;
    5 - изоляция;
    6 - экранирующие ленты;
    7 - гофрированная алюминиевая оболочка;
    8 - антикоррозийная защита;
    9 - оболочка из поливинилхлорида

     Такую схему можно применить для кабелей со сплошной экструдированной изоляцией, которые применяются для соединения генераторов при относительно низком напряжении. Напряжение на охлаждающей жидкости должно снижаться до потенциала земли прежде, чем она попадет в перекачивающий насос. В схемах с водяным охлаждением применяют специальные концевые устройства для кабелей, внутри которых охлаждающая жидкость протекает через спиральный канал, обеспечивающий необходимую электрическую изоляцию при рабочем напряжении КЛ. Электрическое сопротивление воды снижается в процессе эксплуатации; опыт показывает, что удельное электрическое сопротивление rв = 200 кОм см является приемлемым. Поэтому для кабелей с внутренним искусственным охлаждением требуется применение регенерирующих установок,  которые  повышают  rв до 200 кОм см  при уменьшении сопротивления до 20 кОм см. Высокое значение rв является существенным для сохранения активных потерь в столбе воды на требуемом уровне. Основное преимущество системы внутреннего искусственного охлаждения заключается в том, что она позволяет удалять теплоту непосредственно от главного источника - жилы кабеля. С другой стороны, возможный объемный расход охлаждающей жидкости ограничивается размером канала в жиле кабеля, а повышение  температуры жидкости на определенной длине кабеля будет значительным.

    Можно использовать фторорганические жидкости для охлаждения по каналу жилы кабеля, например фреон - 12. Жидкий хладагент абсорбирует теплоту, испаряется и поступает в теплообменник. Этот способ находится еще в стадии разработки, и необходимость в таких схемах для кабелей пока еще определяется. Преимуществом такого испарительного охлаждения является установление естественного конвективного потока жидкости; при этом не требуются насосы.

    [ http://www.eti.su/articles/kabel-i-provod/kabel-i-provod_600.html]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > self-contained pressure cable

  • 13 mass

    1. нерациональный метод ограничения выбросов вредных веществ
    2. масса
    3. коммерциализация

     

    масса
    Мера инерции.
    Единица измерения

    кг
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    2.13 коммерциализация: Предоставление изделия, охватываемого настоящим стандартом, на рынке страны за соответствующую плату или бесплатно с целью его распространения и/или использования.

    2.14 В настоящем стандарте применены следующие обозначения и сокращения

    2.14.1 Обозначения и единицы измерения показателей, определяемых при испытаниях (см. таблицу 1).

    Таблица 1

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    Ар

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    Ат

    м2

    Площадь поперечного сечения выпускной трубы

    aver

    Средневзвешенные величины:

    м3

    расход потока;

    кг/ч

    масса потока;

    г/(кВт · ч)

    удельный выброс

    a

    -

    Углеродный коэффициент топлива

    с1

    -

    Углерод С1, эквивалентный углеводороду

    conc

    млн-1 или объемная доля, %

    Концентрация (с индексом компонента)

    concc

    млн-1 или объемная доля, %

    Фоновая скорректированная концентрация

    concd

    млн-1 или объемная доля, %

    Концентрация разбавляющего воздуха

    DF

    -

    Коэффициент разбавления

    fa

    -

    Лабораторный атмосферный коэффициент

    FFH

    -

    Удельный коэффициент топлива, используемый для расчета влажного состояния по сухому состоянию

    GAIRW

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Расход разбавляющего воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    HREF

    г/кг

    Исходная абсолютная влажность 10,71 г/кг для расчета NOx и поправочных коэффициентов на конкретную влажность

    на

    г/кг

    Абсолютная влажность воздуха на выпуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    i

    -

    Нижний индекс, обозначающий i-й режим

    KH

    -

    Поправочный коэффициент на влажность для NOx

    Kp

    -

    Поправочный коэффициент на влажность для вредных частиц

    KW,a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW,d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW,e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW,r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для первичных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента

    mass

    г/ч

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Отобранная масса пробы вредных частиц в разбавляющем воздухе

    MS

    мг

    Отобранная масса пробы вредных частиц

    pa

    кПа

    Давление насыщенного пара при испытаниях (ИСО 3046-1 [1]: psy)

    pb

    кПа

    Полное барометрическое давление (ИСО 3046-1 [1]:

    рх- полное барометрическое давление при местных окружающих условиях; рy- полное барометрическое давление при испытаниях)

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    P

    кВт

    Мощность без поправки на торможение

    Pae

    кВт

    Общая мощность, поглощаемая вспомогательным оборудованием, установленным для проведения испытания, которое не требуется в соответствии с 2.8

    PM

    кВт

    Максимальная мощность (приложение А)

    Pm

    кВт

    Мощность, измеренная в различных режимах испытания

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Rf

    -

    Коэффициент чувствительности FID

    s

    кВт

    Мощность, определяемая на динамометрическом стенде

    Ta

    К

    Абсолютная температура воздуха на впуске

    TDd

    К

    Абсолютная точка росы

    tsc

    К

    Температура воздуха промежуточного охлаждения

    Tref

    К

    Исходная температура [воздуха, поступающего в зону горения 298 К (25 °С)]

    TSCRef

    К

    Исходная температура воздуха промежуточного охлаждения

    VAIRD

    м3

    Объемный расход воздуха на впуске в сухом состоянии

    VAIRW

    м3

    Объемный расход воздуха на впуске во влажном состоянии

    VDIL

    м3

    Объем пробы разбавляющего воздуха, прошедшего через фильтры отбора проб вредных частиц

    VDILW

    м3

    Объемный расход разбавляющего воздуха во влажном состоянии

    VEDFW

    м3

    Объемный эквивалентный расход разбавленного отработавшего газа во влажном состоянии

    VEXHD

    м3

    Объемный расход отработавших газов в сухом состоянии

    VEXHW

    м3

    Объемный расход отработавших газов во влажном состоянии

    VSAM

    м3

    Объем пробы, прошедшей через фильтры отбора проб вредных частиц

    VTOTW

    м3

    Объемный расход разбавленных отработавших газов во влажном состоянии

    WF

    -

    Теоретический коэффициент весомости режима

    WFE

    -

    Фактический коэффициент весомости режима

    Источник: ГОСТ Р 41.96-2005: Единообразные предписания, касающиеся двигателей с воспламенением от сжатия, предназначенных для установки на сельскохозяйственных и лесных тракторах и внедорожной технике, в отношении выброса вредных веществ этими двигателями оригинал документа

    2.1.32 нерациональный метод ограничения выбросов вредных веществ: Любой метод или способ, который при эксплуатации ТС в нормальных условиях уменьшает эффективность системы ограничения выбросов вредных веществ до уровня ниже предполагаемого при использовании предписанных методов определения концентрации выбросов вредных веществ.

    2.2 В настоящем стандарте применены следующие обозначения и сокращения:

    2.2.1 Обозначения и единицы измерения показателей, определяемых в испытаниях

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    АР

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    АТ

    м2

    Площадь поперечного сечения выпускной трубы

    СЕЕ

    -

    Эффективность по этану

    СЕМ

    -

    Эффективность по метану

    С1

    -

    Углеводороды, эквивалентные углероду С1

    сопс

    млн-1 или объемная доля, %

    Концентрация. Указанное обозначение используется в качестве нижнего индекса

    D0

    м3

    Отрезок, отсекаемый на координатной оси калибровочной функции PDP

    DF

    -

    Коэффициент разбавления

    D

    -

    Константа функции Бесселя

    Е

    -

    Константа функции Бесселя

    EZ

    г/(кВт×ч)

    Интерполированный выброс NOx в контрольной точке

    fa

    -

    Лабораторный атмосферный коэффициент

    fc

    с-1

    Частота, отсекаемая фильтром Бесселя

    FFH

    -

    Удельный коэффициент топлива для расчета влажного состояния по сухому состоянию

    Fs

    -

    Стехиометрический коэффициент

    GAIRV

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Массовый расход разбавленного воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    H

    мДж/м3

    Теплотворная способность

    HREF

    г/кг

    Исходная абсолютная влажность (10,71 г/кг)

    Ha

    г/кг

    Абсолютная влажность воздуха на впуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    HTCART

    моль/моль

    Водородно-углеродное число

    i

    -

    Нижний индекс, обозначающий i-й режим

    К

    -

    Константа Бесселя

    k

    м-1

    Коэффициент светопоглощения

    KH, D

    -

    Поправочный коэффициент на влажность для NОx дизельного двигателя

    KH, G

    -

    Поправочный коэффициент на влажность для NOx газового двигателя

    Kv

    Калибровочная функция трубки Вентури CFV

    KW, a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW, d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW, e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW, r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для неразбавленных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента испытуемого двигателя

    La

    м

    Эффективная база дымомера

    т

    Коэффициент наклона калибровочной функции насоса PDP

    mass

    г/ч или г

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Уловленная масса проб вредных частиц в разбавляющем воздухе

    Мf

    мг

    Уловленная масса проб вредных частиц

    Мf, p

    мг

    Масса проб вредных частиц, уловленная на основном фильтре

    Мf, b

    мг

    Масса проб вредных частиц, уловленная на вспомогательном фильтре

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедших через фильтры для отбора вредных частиц

    MSEK

    кг

    Масса вторичного разбавляющего воздуха

    MTOTW

    кг

    Общая масса пробы CVS за цикл во влажном состоянии

    MTOTW, i

    кг

    Мгновенная масса пробы CVS во влажном состоянии

    N

    %

    Дымность

    NP

    -

    Общее число оборотов насоса PDP за цикл

    NP, i

    -

    Число оборотов насоса PDP в течение определенного промежутка времени

    n

    мин-1

    Частота вращения двигателя

    np

    с-1

    Частота вращения насоса PDP

    nhi

    мин-1

    Высокая частота вращения двигателя

    nlo

    мин-1

    Низкая частота вращения двигателя

    nref

    мин-1

    Исходная частота вращения двигателя для испытания ETC

    pa

    кПа

    Давление насыщения пара на впуске воздуха в двигатель

    pA

    кПа

    Абсолютное давление

    pB

    кПа

    Полное давление

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    p1

    кПа

    Снижение давления на входе в насос

    P(a)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, устанавливаемыми при проведении испытаний

    P(b)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, демонтируемыми при проведении испытания

    P(n)

    кВт

    Некорректированная полезная мощность

    P(m)

    кВт

    Мощность, измеренная на испытательном стенде

    W

    -

    Константа Бесселя

    QS

    м3

    Объемный расход воздуха в трубке Вентури CFV

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Si

    m-1

    Мгновенное значение дымности

    Sl

    -

    Коэффициент l-смещения

    T

    К

    Абсолютная температура

    Rf

    -

    Коэффициент чувствительности FID

    r

    кг/м3

    Плотность

    S

    кВт

    Мощность, на которую отрегулирован динамометр

    Та

    К

    Абсолютная температура воздуха на впуске

    t

    с

    Время измерения

    te

    с

    Время срабатывания электрического сигнала

    tf

    с

    Время реакции фильтра для функции Бесселя

    tp

    с

    Физическое время реакции

    Dt

    с

    Временной интервал между последовательными моментами считывания данных о дымности (= 1/частота отбора проб)

    Dt1

    с

    Временной интервал между значениями мгновенных расходов в трубке Вентури CFV

    t

    %

    Прозрачность дыма

    V0

    м3/об

    Калибровочная функция объемного расхода насоса PDP в эксплуатационных условиях (на 1 оборот вала насоса)

    W

    -

    Число Воббе

    Wact

    КВт×ч

    Фактическая работа за цикл испытания ETC

    Wref

    КВт×ч

    Исходная работа за цикл испытания ETC

    WF

    -

    Коэффициент весомости

    WFE

    -

    Эффективный коэффициент весомости

    X0

    м3/oб

    Калибровочная функция объемного расхода воздуха насоса PDP (на 1 оборот вала насоса)

    Yi

    м-1

    Среднее значение коэффициента светопоглощения за 1 с по Бесселю

    2.2.2 Обозначения химических компонентов

    СН4 - метан;

    С2Н6 - этан;

    С2Н5ОН - этанол;

    С3Н8 - пропан;

    СО - оксид углерода;

    DOP - диоктилфталат;

    СО2 - диоксид углерода;

    НС - углеводороды;

    NMHC - (non-methane hydrocarbons) углеводороды, не содержащие метан;

    x - оксиды азота;

    NO - оксид азота;

    2 - диоксид азота;

    РТ - (particulates) вредные частицы.

    ТНС - (total hydrocarbons) общее количество углеводородов.

    2.2.3 Сокращения

    CFV - (critical flow venturi) трубка Вентури с критическим расходом;

    CLD - (chemiluminescent detector) хемилюминесцентный детектор;

    CVS - (constant volume sampling) отбор проб при постоянном объеме;

    ELR - (European load response test) европейский цикл испытаний реакции двигателя на изменение нагрузки;

    ESC - (European steady state cycle) европейский цикл испытаний в установившихся режимах;

    ETC - (European transient cycle) европейский цикл испытаний в переходных режимах;

    FID - (flame ionization detector) плазменно-ионизационный детектор;

    GC - (gas chromatograph) газовый хроматограф;

    HCLD - (heated chemiluminescent detector) нагреваемый хемилюминесцентный детектор;

    HFID - (heated flame ionization detector) нагреваемый плазменно-ионизационный детектор;

    LPG - (liquefied petroleum gas) сжиженный нефтяной газ;

    NDIR - (non-dispersive infrared) недисперсионный инфракрасный анализатор;

    NG - (natural gas) природный газ;

    NMC - (non-methane cutter) отделитель фракций, не содержащих метан;

    PDP - (positive displacement pomp) насос с объемным регулированием;

    PSS - (particulate sampling system) система отбора проб вредных частиц.

    Источник: ГОСТ Р 41.49-2003: Единообразные предписания, касающиеся сертификации двигателей с воспламенением от сжатия и двигателей, работающих на природном газе, а также двигателей с принудительным зажиганием, работающих на сжиженном нефтяном газе, и транспортных средств, оснащенных двигателями с воспламенением от сжатия, двигателями, работающими на природном газе, и двигателями с принудительным зажиганием, работающими на сжиженном нефтяном газе. В отношении выбросов вредных веществ оригинал документа

    Англо-русский словарь нормативно-технической терминологии > mass

  • 14 bulb

    колба

    - 1. Стеклянная оболочка, используемая для изготовления электрической лампы или электронной трубки. 2. Часть термочувствительной системы, которая размещается в месте измерения значения регулируемого параметра. 3. Модифицированный подземный (находящийся в земле) стебель, такой как от луковицы тюльпана. Примечание. Имеется в виду процесс охлаждения для формирования такого стебля.

    Англо-русский словарь по кондиционированию и вентиляции > bulb

  • 15 bulb

    колба

    - 1. Стеклянная оболочка, используемая для изготовления электрической лампы или электронной трубки. 2. Часть термочувствительной системы, которая размещается в месте измерения значения регулируемого параметра. 3. Модифицированный подземный (находящийся в земле) стебель, такой как от луковицы тюльпана. Примечание. Имеется в виду процесс охлаждения для формирования такого стебля.

    English-Russian dictionary of terms for heating, ventilation, air conditioning and cooling air > bulb

  • 16 ejection

    1. эжекция
    2. удаление (хоккей на льду)
    3. испускание
    4. выпрессовывание порошковой формовки
    5. выброс
    6. выбрасывание

     

    выпрессовывание порошковой формовки
    выпрессовывание

    Удаление порошковой формовки из формующей полости пресс-формы или эластичного контейнера.
    [ ГОСТ 17359-82]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    испускание

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    удаление
    Ситуация, когда игрок отправляется на скамейку штрафников на 2, 5, 10 минут или до конца матча.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    ejection
    Situation when a player is sent to the penalty box for 2, 5, 10 minutes or till the end of the game.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    эжекция
    Увлечение потоком с более высоким давлением, движущимся с большой скоростью, среды с низким давлением.
    [ http://www.heuristic.su/effects/catalog/est/byId/description/1090/index.html]

    Эффект эжекции заключается в том, что поток с более высоким давлением, движущийся с большой скоростью, увлекает за собой среду низкого давления. Увлеченный поток называется эжектируемым.

    Повышение давления эжектируемого потока без непосредственной механической энергии применяется в струйных аппаратах, которые используются в различных отраслях техники: на электростанциях - в устройствах топливосжигания (газовые инжекционные горелки);  в системе питания паровых котлов (противокавитационные водоструйные насосы); для повышения давления из отборов турбин (пароструйные компрессоры); для отсоса воздуха из конденсатора (пароструйные и водоструйные эжекторы); в системах воздушного охлаждения генераторов; в теплофикационных установках; в качестве смесителей на отопительных водах; в промышленной теплотехнике - в системах топливоподачи, горения и воздухоснабжения печей, стендовых установках для испытания двигателей; в вентиляционных установках - для создания непрерывного потока воздуха через каналы и помещения; в водопроводных установках - для подъема воды из глубоких скважин; для транспортирования твердых сыпучих материалов и жидкостей.

    Для технической реализации эффекта эжекции достаточно направить поток воздуха от домашнего пылесоса в приемный патрубок системы, изображенной на рис. 2.

    4837
    Простейшая эжекционная система

    1 - трубка с потоком эжектирующего воздуха;
    2 - патрубок подвода эжектируемой жидкости;
    3 - резервуар с эжектируемой жидкостью;
    4 - поток воздуха;
    5 - конус распыления эжектируемой жидкости.

    Бернуллиевское разрежение в потоке воздуха вытягивает жидкость (водный окрашенный раствор) из резервуара, и поток воздуха распыляет ее путем отрыва капель с торца патрубка подвода. Перепад высоты между уровнем жидкости в резервуаре и точкой распыления (торцом патрубка) составляет 10 - 15 см. Внутренний диаметр трубки с газовым потоком - 30 - 40мм, патрубка подвода - 2 - 3 мм.

    [ http://www.heuristic.su/effects/catalog/est/byId/description/1090/index.html]

    Тематики

    EN

    3.12 выброс (ejection): Неожиданное движение от станка обрабатываемой заготовки, ее частей или частей станка во время обработки.

    Источник: ГОСТ Р ЕН 12750-2012: Безопасность деревообрабатывающих станков. Станки строгальные (продольно-фрезерные) четырехсторонние

    Англо-русский словарь нормативно-технической терминологии > ejection

  • 17 gage

    1. поверять
    2. периферийный ряд зубьев шарошки
    3. номер сита
    4. манометр
    5. контрольно-измерительный инструмент
    6. калибр (металлургия)
    7. измеритель
    8. диаметр (бурового долота)
    9. датчик (металлургия)
    10. датчик

     

    датчик
    Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем (по РМГ 29).
    [ ГОСТ Р 51086-97]

    датчик

    Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (он «дает» информацию).
    Примечания
    1. Датчик может быть вынесен на значительное расстояние от средства измерений, принимающего его сигналы.
    2. В области измерений ионизирующих излучений применяют термин детектор.
    Пример. Датчики запущенного метеорологического радиозонда передают измерительную информацию о температуре, давлении, влажности и других параметрах атмосферы.
    [РМГ 29-99]

    датчик
    Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы.
    [РД 01.120.00-КТН-228-06]

    датчик
    Первичный преобразователь, в котором изменения значений выходного воздействия или сигнала с заданной точностью соответствуют изменениям значений входного воздействия или сигнала.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]


    КЛАССИФИКАЦИЯ

    Классификация по виду выходных величин

    Классификация по измеряемому параметру

    Классификация по принципу действия

    Классификация по характеру выходного сигнала

    Классификация по среде передачи сигналов

    Классификация по количеству входных величин

    Классификация по технологии изготовления

    [ http://omop.su/article/49/74929.html]

    Тематики

    Обобщающие термины

    EN

     

    датчик
    Элемент (первичный преобразователь) измерит., сигнального регулир. или управл. устрва системы, преобраз. контролир. величину (давление, темп-ру, частоту, скорость, перемещение, напряжение, электрич. ток и т.п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы. В состав д. входит воспринимающий (чувствит.) орган и один или неск. промежут. преобразователей. Часто д. состоит только из одного воспринимающего органа (напр., термопара, тензодатчик и др.).
    В металлургии наиболее распространены д., действие к-рых основано на изменении электрич. сопротивления, емкости и индуктивности электрич. цепи (реостатный, емкостной, индуктивный датчик и др.), а также на возникновении ЭДС при воздействии контролир. механич., тепловых, электрических, магнитных и оптич. величин (тензодатчик, датчик перемещения, пьезоэлектрический датчик, датчик давления, фотоэлемент).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    измеритель
    измерительный прибор
    контрольно-измерительный прибор


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    калибр
    1. Толщина листа или диаметр провода. Различные стандарты произвольны и отличаются для железных и цветных сплавов.
    2. Инструмент для визуального контроля, который позволяет инспектору определить, соответствуют ли размер или контур сформированной детали размерным требованиям.
    3. Прибор, используемый для измерения толщины или длины.

    калибр
    1. Профиль отверстия, образованного смежными ручьями прокатных валков в рабочем положении и зазорами между ними, служит для придания заданных формы и размеров сечению раската. Обычно калибр образуется двумя, реже — тремя и четырьмя валками. По форме калибры могут быть простые — прямоугольные, круглые, квадратные, ромбические, овальные, полосовые, шестиугольные, стрельчатые и фасонные — уголковые, двутавровые, швеллерные и др. По конструкции, т.е. положению линии разъема, калибры подразделяют на открытые и закрытые, по расположению на валках — открытые, закрытые, полузакрытые и диагональные. По назначению — обжимные, вытяжные, черновые, предчистовые и чистовые калибры. Основные элементы калибров — зазор между валками, выпуск калибра, разъем, бурты, закруглеиия, нейтральная линия.
    2. Сменный технологический инструмент, закрепленный на рабочем валке.
    3. Бесшкальный измерительный инструмент для контроля размеров, формы и взаимного расположения частей изделия сравнением размера изделия с калибром по вхождению или степени прилегания их поверхностей.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

     

    контрольно-измерительный инструмент
    измерительное устройство


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    манометр
    Измерительный прибор или измерительная установка для измерения давления или разности давлений.
    [ГОСТ 8.271-77]

    Все манометрические приборы условно делят:

    - на манометры давления
    - вакуумметры, измеряющие разрежение в рабочей среде.

    К их «производным» относят:

    - напоромеры (манометр низкого давления)
    - и измеряющие небольшие разрежения тягомеры, устанавливаемые в цепочке печей и дымовых труб
    - мановакуумметры, контролирующие небольшие избыточные давления (от 0,5 до 50 кгс/см2) и разрежения ниже 760 мм рт. ст..

    По назначению различают:

    - манометры технические (традиционный манометр показывающий или манометр МП),
    - измерительно-регулирующие приборы – электроконтактный манометр (или сигнализирующий манометр),
    - контрольно-калибрующие приборы – манометр образцовый (или манометр давления эталонный).

    По устройству уравновешивающих измеряемое давление схем бывают:

    - манометры гидравлические (жидкостные),
    - поршневые,
    - пружинные.

    Жидкостные манометры чрезвычайно требовательны к внешним условиям эксплуатации, ограничены по измеряемым пределам давления и используются чаще всего для исследовательских работ или в качестве контрольных приборов. Поршневые манометры технические сложны в конструкции, громоздки и используются для систем с экстремальными давлениями и температурами. Пружинные манометры МП (или наиболее востребованный сегодня манометр 100) применяются практически во всех теплотехнических системах и могут изготавливаться в различном исполнении (манометры взрывозащищенные, виброустойчивые, коррозионностойкие) и для работы с разными рабочими средами (манометр газовый, аммиачный, фреоновый и т.д.).

    Поскольку любой электроконтактный манометр (или манометр ЭКМ), технический манометр 100 или с другим диаметром корпуса, контрольные манометрические приборы пружинного типа ограничены по температуре рабочей среды, то они интегрируются в трубопроводы или оборудование при помощи специальной вспомогательной арматуры (сифонные петлевые трубки, охладители и т.д.) и трехходовых кранов или игольчатых клапанов, позволяющих перекрыть доступ горячей жидкости или пара к прибору до их охлаждения, продуть соединительную арматуру для обеспечения чистоты измерений и установить контролирующий манометрический прибор. В системах с импульсным давлением экстремальных значений для защиты манометров дополнительно используют демпферные устройства различных типов.
    [ http://jumas.ru/prommanometry.htm]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    номер сита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    поверять

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > gage

См. также в других словарях:

  • Система охлаждения компьютера — У этого термина существуют и другие значения, см. Система охлаждения. Система охлаждения компьютера набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов. Тепло в конечном итоге может утилизироваться: В… …   Википедия

  • Тепловые трубки — Алюминиевый радиатор с тепловыми трубками Тепловые трубки (англ. heat pipe) элемент системы охлаждения, принцип работы которого основан на том, что в закрытых трубках из теплопроводящего металла (например, меди) находится легкоиспаряющаяся …   Википедия

  • Тепловая трубка — Алюминиевый радиатор с тепловыми трубками Тепловая трубка, теплотрубка (англ. heat pipe)  элемент системы охлаждения, принцип работы которого основан на том, что в закрытых трубках из теплопроводящего …   Википедия

  • Бесшумный персональный компьютер — Тихий персональный компьютер  бесшумный или производящий мало шума (малошумный, тихий) компьютер. Такие компьютеры обычно используют в качестве домашних мультимедийных центров. Содержание 1 Общие положения 2 Источники шума …   Википедия

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • Аполлон-15 (работа на Луне) — Приложение к статье Аполлон 15 Лунный модуль «Аполлона 15» «Фалкон» (англ. Falcon  сокол) совершил посадку на юго восточной окраине Моря Дождей, у отрогов лунных Апеннин, вблизи каньона Хэдли Рилл. Астронавты Дэвид Скотт (командир… …   Википедия

  • время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГАЗ-21 — ГАЗ 21 …   Википедия

  • Краткое описание устройства танка Т-64А — ОБЩИЕ СВЕДЕНИЯ         Танк Т 64А является боевой гусеничной машиной, которая имеет мощное вооружение, надежную броневую защиту и обладает высокой маневренностью. Танк предназначен для решения широкого круга боевых задач. Благодаря мощному… …   Энциклопедия техники

  • Дизель-поезд Д1 — Д1 Дизель поезд Д1 …   Википедия

  • Карбюратор — Карбюратор  узел системы питания ДВС Отто, предназначенный для создания горючей смеси оптимального состава путём смешивания (карбюрации, фр. carburation) жидкого топлива с воздухом и регулирования количества её подачи в цилиндры… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»